YOLO-SOLANO AIR QUALITY MANAGEMENT DISTRICT

1947 Galileo Court, Suite 103; Davis, CA 95618

Diesel Fired Emergency Internal Combustion Engine Emission Evaluation

ENGINEER:

Alex Huth

ATC # C-12-129

SIC Code #

8221 = 608.8 kr

COMPANY NAME:

University of California, Davis

UTM E 608.8 km UTM N 4266.2 km

ENGINE LOCATION:

The engine will be located at Tercero Student Housing - Building #6, Zone E(TBD), CAAN 4983 in Davis. The engine will not be located within 1,000 feet of a K-12 school and is not subject to the

requirements of H&S 42301.6.

PROPOSAL:

The applicant is proposing to install a diesel fired emergency internal combustion (IC) engine.

The facility is currently operating under Title V Operating Permit F-00454-22, proposed December 4, 2012. This evaluation will serve as both the District emission evaluation and the Title V Statement of Basis. This evaluation reflects only the requirements pertaining to C-12-129. Emission units that are not affect by this proposal were evaluated in the original Statement of Basis or the subsequent iterations and will not be reviewed in this evaluation.

The changes to the Title V permit will also include administrative amendments.

PROCESS:

The engine is used to power an emergency generator.

FLOW DIAGRAM:

None required.

IDENTIFICATION:

P-55-12

EQUIPMENT:

463 BHP diesel fired John Deere IC engine, Model No. 6090HFG86, Serial No. TBD, Model Year

2012, EPA Certified Tier III Engine

CONTROL EQUIPMENT:

Aftercooler and turbocharger

APPLICATION DATA:

Operating Schedule	<u>Units</u>	Formula Symbol	Reference
Max. Daily Operation =	24 hours/day	Td	Applicant
Max. 1st Quarter Operation =	200 hours/quarter	T1	Applicant
Max. 2nd Quarter Operation =	200 hours/quarter	T2	Applicant
Max. 3rd Quarter Operation =	200 hours/quarter	Т3	Applicant
Max. 4th Quarter Operation =	200 hours/quarter	T4	Applicant
Max. Yearly Operation =	200 hours/year	Ту	Applicant

Engine Data	<u>Units</u>	Formula Symbol	Reference
Maximum BHP Rating =	463 BHP	HP	Manufacturer's Data
Exhaust Volume =	2,246 ACFM	EV	Manufacturer's Data
Exhaust Temperature =	1,387 Degrees Rankine (F+460) ET	Manufacturer's Data
Hourly Fuel Consumption =	22.2 Gallons	FT	Manufacturer's Data

ASSUMPTIONS:

	<u>Units</u>	Formula Symbol	<u>Reference</u>
Sulfur Content of Fuel =	0.0015 %	SC	CARB Certified Diesel
Standard Temperature =	528 Degrees Rankine (F+460)) ST	STAPPA-ALAPCO, Pg. 1-7 (5/30/91)
Moisture Content =	10 %	PM	STAPPA-ALAPCO, Pg. 1-7 (5/30/91)
BTU Content =	19,300 BTU/lb	BC	AP-42, Table 3.4-1(a) (10/96)
Density =	7.1 lb/gallon	DE	AP-42, Table 3.4-1(a) (10/96)

Diesel Particulate ControlUnitsFormula SymbolReferenceParticulate Controls =NoApplicant

Baseline Reduction = 0	% CE	Manufacturer's Data
------------------------	------	---------------------

EMISSION FACTORS:		<u>Units</u>	Formula Symbol	Reference
	VOC =	0.08 g/bhp-hr	EFvoc	SCAQMD ICE Cert. List
	CO =	0.45 g/bhp-hr	EFco	SCAQMD ICE Cert. List
	NOx =	2.76 g/bhp-hr	EFnox	SCAQMD ICE Cert. List
	SOx =	0.0055 g/bhp-hr	EFsox	AP-42, Table 3.4-1 (10/96) *
	PM10 =	0.08 g/bhp-hr	EFpm	SCAQMD ICE Cert. List **

^{*} Only the emission factor listed in Table 3.4-1 is used since it assumes all fuel bound sulfur is converted to SOx.

CALCULATIONS:

1. Determine the Permitted Diesel Fuel Limits:

Daily Diesel Limit = Td * FT =	533 gallons
1st Quarter Diesel Limit = T1 * FT =	4,440 gallons
2nd Quarter Diesel Limit = T2 * FT =	4,440 gallons
3rd Quarter Diesel Limit = T3 * FT =	4,440 gallons
4th Quarter Diesel Limit = T4 * FT =	4,440 gallons
Yearly Diesel Limit = Ty * FT =	4,440 gallons

2. Determine Dry Standard Cubic Feet of Exhaust:

Formula Symbol SCFM

DSCFM Exhaust = EV * ST/ET * (100%-PM) = 769.5 dscfm

3. Determine Yearly MMBtu combusted in Engine for Toxics:

Yearly MMBtu = Ty * FT * DE * BC * (1 MMBtu/1,000,000 Btu) = 608.4 MMBtu/year

EMISSION CALCULATIONS:

1. Determine VOC Emissions:

Max Daily VOC Emissions = Td * HP * EFvoc * (1 lb/453.6 g) =	2.0 lb/day
1st Quarter VOC Emissions = T1 * HP * EFvoc * (1 lb/453.6 g) =	16 lb/quarter
2nd Quarter VOC Emissions = T2 * HP * EFvoc * (1 lb/453.6 g) =	16 lb/quarter
3rd Quarter VOC Emissions = T3 * HP * EFvoc * (1 lb/453.6 g) =	16 lb/quarter
4th Quarter VOC Emissions = T4 * HP * EFvoc * (1 lb/453.6 g) =	16 lb/quarter
Max Yearly VOC Emissions = Ty * HP * EFvoc * (1 lb/453.6 g) * (1 ton/2,000 lb) =	0.01 tons/year

2. Determine CO Emissions:

11.0 lb/day	Max. Daily CO Emissions = Td * HP * EFco * (1 lb/453.6 g) =
92 lb/quarter	1st Quarter CO Emissions = T1 * HP * EFco * (1 lb/453.6 g) =
92 lb/quarter	2nd Quarter CO Emissions = T2 * HP * EFco * (1 lb/453.6 g) =
92 lb/quarter	3rd Quarter CO Emissions = T3 * HP * EFco * (1 lb/453.6 g) =
92 lb/quarter	4th Quarter CO Emissions = T4 * HP * EFco * (1 lb/453.6 g) =
0.05 tons/year	Max. Yearly CO Emissions = Ty * HP * EFco * (1 lb/453.6 g) * (1 ton/2,000 lb) =

3. Determine NOx Emissions:

Max. Hourly NOx Emissions = HP * EFnox * (1 lb/453.6 g) =	2.8 lb/hour
Max. Daily NOx Emissions = Td * HP * EFnox * $(1 \text{ lb}/453.6 \text{ g})$ =	67.6 lb/day
1st Quarter NOx Emissions = T1 * HP * EFnox * (1 lb/453.6 g) =	563 lb/quarter
2nd Quarter NOx Emissions = T2 * HP * EFnox * (1 lb/453.6 g) =	563 lb/quarter
3rd Quarter NOx Emissions = T3 * HP * EFnox * (1 lb/453.6 g) =	563 lb/quarter
4th Quarter NOx Emissions = T4 * HP * EFnox * (1 lb/453.6 g) =	563 lb/quarter
Max. Yearly NOx Emissions = Ty * HP * EFnox * (1 lb/453.6 g) * (1 ton/2,000 lb) =	0.28 tons/year

4. Determine SOx Emissions:

```
Max. Hourly SOx Emissions = HP * EFsox * (1 lb/453.6 g) = 0.0 lb/hour Max. Daily SOx Emissions = Td * HP * EFsox * (1 lb/453.6 g) = 0.1 lb/day 1st Quarter SOx Emissions = T1 * HP * EFsox * (1 lb/453.6 g) = 1 lb/quarter
```

^{**} All particulate matter is assumed to be less than 1 micrometer aerodynamic diameter (AP-42, Section 3.3).

2nd Quarter SOx Emissions = T2 * HP * EFsox * (1 lb/453.6 g) =	1 lb/quarter	
3rd Quarter SOx Emissions = T3 * HP * EFsox * (1 lb/453.6 g) =	1 lb/quarter	
4th Quarter SOx Emissions = T4 * HP * EFsox * (1 lb/453.6 g) =	1 lb/quarter	
Max. Yearly SOx Emissions = Ty * HP * EFsox * (1 lb/453.6 g) * (1 ton/2,000 lb) =	0.00 tons/year	
5. Determine PM10 Emissions:		
Max. Hourly PM10 Ems. = HP * EFpm * (1 lb/453.6 g) * (100%-CE) =	0.1 lb/hour	
Max. Daily PM10 Ems. = $Td * HP * EFpm * (1 lb/453.6 g) * (100%-CE) =$	2.0 lb/day	
1st Quarter PM10 Ems. = T1 * HP * EFpm * (1 lb/453.6 g) * (100%-CE) =	16 lb/quarter	
2nd Quarter PM10 Ems. = T2 * HP * EFpm * (1 lb/453.6 g) * (100%-CE) =	16 lb/quarter	
3rd Quarter PM10 Ems. = T3 * HP * EFpm * (1 lb/453.6 g) * (100%-CE) =	16 lb/quarter	
4th Quarter PM10 Ems. = T4 * HP * EFpm * (1 lb/453.6 g) * (100%-CE) =	16 lb/quarter	
Yearly PM10 Ems. = Ty * HP * EFpm * (1 lb/453.6 g) * (1 ton/2,000 lb) * (100%-CE) =	0.01 tons/year	
6. Determine Particulate Matter Emission Concentration:		
PM Conc. = [PM lb/hr] * (7,000 grains/lb) * (1 hr/60 min) * (1/SCFM) =	0.01 gr/dscf	
7. Determine SOx Emission Concentration:		
SOx % = [SOx lb/hr] * (385 scf/lb-mole) * (lb-mole/64 lb) * (1 hr/60 min) * (1/SCFM) * 100% =	0.0001 %	
8. Determine Particulate Matter Emission Rate:		Formula <u>Symbol</u>
PM Emission Rate = Ty * HP * EFpm * (1 year/8,760 hrs) * (1 hr/3,600 sec) * (100%-CE) =	0.0002 grams/sec	ER

RULE & REGULATION COMPLIANCE EVALUATION:

<u>District Rule 2.3-Ringelmann</u>

This rule specifies the allowable opacity limit for all sources operating in the District.

Compliance Status: The rule applies to any visible emissions at the stationary source. The version of the rule used in this evaluation is the rule adopted on January 13, 2010 and is included in the current California State Implementation Plan (SIP). The source is currently in compliance with the requirements of the rule.

Requirement: A person shall not discharge into the atmosphere from any single source of emission whatsoever, any air contaminant, other than uncombined water vapor, for a period or periods aggregating more than three (3) minutes in any one hour which is:

- a. As dark or darker in shade as that designated as No. 1 on the Ringelmann Chart, as published by the United States Bureau of Mines; or
- b. Of such opacity as to obscure an observer's view to a degree equal to or greater than does smoke described in subsection 301.2 a. of this rule.

Permit Condition: The permit holder shall not discharge into the atmosphere from any single source of emission whatsoever, any air contaminant for a period or periods aggregating more than three (3) minutes in any one hour which is:

- a. As dark or darker in shade as that designated as No. 1 on the Ringelmann Chart; or
- b. Greater than 20% opacity. [District Rule 2.3/C-12-129]

District Rule 2.5-Nuisance

This rule requires that sources are not a public nuisance.

Compliance Status: The rule applies to all emission units at the stationary source. The source is currently in compliance with the requirements of the rule.

Permit Condition: The Permit Holder shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public or which endanger the comfort, repose, health, or safety of any such persons or the public or which cause to have a natural tendency to cause injury or damage to business or property.

A condition will not be placed on the ATC, but will be added to the PTO upon implementation.

[The permit condition is federally enforceable because it derives from District Rule 2.5 - Nuisance which is currently part of the SIP. The

District is taking steps to remove District Rule 2.5 from the SIP. Once the U.S. Environmental Protection Agency (EPA) has taken final action to remove District Rule 2.5 from the SIP, this permit condition will become State-enforceable only.]

District Rule 2.11-Particulate Matter

This rule specifies the allowable particulate matter (PM) emission concentration at standard conditions. For the purpose of this evaluation, the PM emissions are considered to be 100% PM10 (PM with an aerodynamic diameter of 10 microns or less).

Compliance Status: The proposed IC engine is subject to this rule. The version of the rule used in this evaluation is the rule adopted on January 13, 2010 and included in the current SIP.

Requirement: A person shall not release or discharge into the atmosphere, from any single source operation, dust fumes or total suspended particulate matter emissions in excess of 0.1 grain per cubic foot of gas at dry standard conditions.

As shown above in Emission Calculations #6, the PM concentration is expected to be in compliance with this requirement.

Emission Concentration (gr/dscf)

0.01

Allowable (gr/dscf)

0.1

Compliance
Yes

The requirements of the SIP can be subsumed by the Authority of District Rule 3.4, New Source Review. P-55-12 is also subject to the federally applicable PM emission limit of 2.0 lbs/day (established by Rule 3.4, Section 409.2).

Permit Condition: PM10 emissions shall not exceed 2.0 lb/day, 16 lb/1st, 2nd, 3rd, and 4th calendar quarter, and 0.01 tons/year. [District Rule 3.4/C-12-129]

District Rule 2.12-Section A-Sulfur Compounds

This rule specifies the allowable sulfur dioxide and particulate matter combustion contaminant emission concentrations at standard conditions. For the purposes of this evaluation, the sulfur oxide (SOx) emissions are considered to be 100% SO2.

Compliance Status: The proposed IC engine is subject to this rule. The rule applies to any source operation which emits, or may emit sulfur gaseous emissions and particulate matter combustion contaminants. The version of the rule used in this evaluation is the rule adopted on January 13, 2010 and included in the current SIP. The proposed engine is currently in compliance with the requirements of the rule.

Requirement: A person shall not discharge into the atmosphere from any single source of emission whatsoever, any one or more of the following contaminants, in any state or combination thereof, in excess of the following concentrations at the point of discharge:

- A. Sulfur compounds calculated as sulfur dioxide (SO2) 0.2%, by volume at standard conditions.
- B. Particulate Matter Combustion Contaminants: 0.3 grains per cubic foot of gas calculated to 12 percent of carbon dioxide (CO2) at standard conditions.

As shown above in Emission Calculations #7, the sulfur concentration (in percent) is expected to be in compliance with the requirement. Compliance with the particulate limit is demonstrated in Calculation #6 (See 2.11).

Emission Concentration (% SOx as SO2)

0.0001

Allowable (% SOx as SO2)

0.2

Compliance
Yes

The requirements of the SIP can be subsumed by the Authority of District Rule 3.4, New Source Review. P-55-12 is also subject to the federally applicable SOx emission limit of 0.1 lbs/day (established by Rule 3.4, Section 409.2).

Permit Condition: SOx emissions shall not exceed 0.1 lb/day, 1 lb/1st, 2nd, 3rd, and 4th calendar quarter, and negligible tons/year. [District Rule 3.4/C-12-129]

<u>District Rule 2.16 - Fuel Burning Heat or Power Generators</u>

This rule specifies the allowable sulfur dioxide, nitrogen oxides calculated as nitrogen dioxide, and combustion particulate limits for non-mobile fuel burning equipment for a heat or power generating unit in the District.

Compliance Status: The IC engine is subject to this rule. The version of the rule used in this evaluation is the rule adopted on October 1, 1971 and included in the current SIP. The proposed engine is currently in compliance with the requirements of the rule.

Requirement: A person shall not build, expand, or operate any non-mobile fuel burning equipment for a heat or power generator unit unless the discharge into the atmosphere of contaminants will not and does not exceed any one or more of the following rates:

1. 200 pounds per hour of sulfur compounds, calculated as sulfur dioxide (SO2):

- 2. 140 pounds per hour of nitrogen oxides, calculated as nitrogen dioxide (NO2);
- 3. 40 pounds per hour of combustion particulate derived from the fuel. [SIP approved version of District Rule 2.16]

<u>Pollutant</u>	<u>Allowable</u>		<u>Actual</u>		Compliance
SOx	200	lb/hr	0.0	lb/hr	Yes
NOx	140	lb/hr	2.8	lb/hr	Yes
PM	40	lb/hr	0.1	lb/hr	Yes

Subsuming Demonstration: The requirements of the SIP can be subsumed by the Authority of District Rule 3.4, New Source Review. P-55-12 is also subject to the federally applicable SOx emission limit of 0.1 lbs/day, NOx emission limit of 67.6 lbs/day and particulate emission limit of 2.0 lbs/day (established by Rule 3.4, Section 409.2).

Permit Condition: SOx emissions shall not exceed 0.1 lb/day, 1 lb/1st, 2nd, 3rd, and 4th calendar quarter, and negligible tons/year. [District Rule 3.4/C-12-129]

Permit Condition: NOx emissions shall not exceed 67.6 lb/day, 563 lb/1st, 2nd, 3rd, and 4th calendar quarter, and 0.28 tons/year. [District Rule 3.4/C-12-129]

Permit Condition: PM10 emissions shall not exceed 2.0 lb/day, 16 lb/1st, 2nd, 3rd, and 4th calendar quarter, and 0.01 tons/year. [District Rule 3.4/C-12-129]

District Rule 2.32-Stationary Internal Combustion Engines

The purpose of the rule is to limit emissions of nitrogen oxides (NOx) and carbon monoxides (CO) from stationary internal combustion engines. The rule applies to any stationary internal combustion engines rated at more than 50 brake horsepower, operated on any gaseous fuel, including liquid petroleum gas, or diesel fuel. The rule shall not apply to engines used directly and exclusively for agricultural operations necessary for the growing of crops or the raising of fowl or animals.

Compliance Status: The IC engine is subject to this rule. The version of the rule used in this evaluation was adopted on October 10, 2001 and is part of the current SIP. The engine will have limited hours per year for maintenance operations and 200 hours per year for total use, and is therefore exempt from the rule (except Section 503) pursuant to Section 110.3. Section 503 requires that the source maintain a log of the engine's operating hours and that the log be retained for two years.

Requirement: An owner or operator claiming an exemption under Section 110.2 or 110.3 of this Rule shall maintain a log of operating hours for each engine. The log of operating hours shall be retained for two years and be made available to the Air Pollution Control Officer upon request.

Subsuming Demonstration: Title 17 CCR Section 93115-Airborne Toxic Control Measure (ATCM) for Stationary Compression Ignition Engines, requires the owner or operator to maintain logs (see below). The District Rule 3.8, Federal Operating Permits requirement of Section 302.6.b requires records be retained for a period of five (5) years. The log and record-keeping requirements of Rule 2.32 will be subsumed by ATCM, Rule 3.4 and 3.8 requirements.

Permit Condition: The Permit Holder shall not operate the IC engine more than 200 hours per calendar year. [District Rule 3.4, §110.2/C-12-129]

Permit Condition: The Permit Holder shall maintain a monthly log of usage that shall list and document the nature of use for each of the following:

- a. Emergency use hours of operation;
- b. Maintenance and testing hours of operation;
- c. Hours of operation for emission testing to show compliance with Title 17 CCR, Section 93115.6(a)(3) and 93115.6(b)(3);
- d. Initial start-up hours; and
- e. Fuel use through the retention of fuel purchase records which indicate that the fuel used in the IC engine is CARB certified diesel fuel or an approved ATCM compliant alternative fuel. [District Rule 3.4, §402 and Title 17 CCR, Section 93115.10(f)(1)/C-12-129]

Permit Condition: The Permit Holder shall retain the log for a minimum of 60 months (5 years) from the date of entry. Log entries made within 24 months of the most recent entry shall be retained on-site and made immediately available to the District staff upon request. Log entries made from 25 to 60 months from most recent entry shall be made available to District staff within 5 working days from request. [District Rule 3.8, §302.6, District Rule 3.4 and Title 17 CCR, Section 93115.10(f)(2)/C-12-129]

<u>District Rule 3.1-General Permit Requirements</u>

The purpose of this rule is to provide an orderly procedure for the review of new sources of air pollution and of the modification and operation of existing sources through the issuance of permits.

Compliance Status: The source has satisfied the provisions of General Permit Requirements. The rule applies to all emission units at the stationary source. The version of the rule used in this evaluation was adopted on February 23, 1994 and is part of the current SIP. The General Permit Requirements are shown below.

Permit Condition: No person shall build, erect, alter, or replace any facility, article, machine, equipment, or other contrivance, the use of which may cause the issuance of air contaminants, or the use of which may eliminate or reduce or control the issuance of air contaminants, without first obtaining an authorization to construct from the Air Pollution Control Officer as specified in Section 401 of District Rule 3.1. [District Rule 3.1, §301.1]

Permit Condition: No person shall operate any facility, article, machine, equipment, or other contrivance, for which an authorization to construct is required by District Rules and Regulations without first obtaining a written permit from the Air Pollution Control Officer. [District Rule 3.1, §302.1]

Permit Condition: No person shall operate any facility, article, machine, equipment, or other contrivance, the use of which may cause the issuance of air contaminants or the use of which may eliminate or reduce or control the issuance of air contaminants, without obtaining a permit from the Air Pollution Control Officer or the Hearing Board. [District Rule 3.1, §302.2]

Permit Condition: To assure compliance with all applicable regulations, the Air Pollution Control Officer may impose written conditions on any authorization to construct or permit to operate. The Air Pollution Control Officer may, after 30-day notice to the permittee, add or amend written conditions on any permit upon annual renewal to ensure compliance with and enforceability of any applicable rule or regulation. Additional provisions, as required by Title V of the Federal Clean Air Act, for the reopening of permits are specified in Rule 3.8, FEDERAL OPERATING PERMITS. Commencing work or operation under such a revised permits shall be deemed acceptance of all of the conditions so specified. [District Rule 3.1, §402]

Permit Condition: The owner or operator of any facility, article, machine, equipment, or other contrivance for which a permit to operate is in effect shall notify the District office whenever a breakdown, malfunction, or operational upset condition exists which would tend to increase emissions of air pollutants or whenever any operating condition contrary to any provision of the permit to operate exists. Such notice shall be given to the District no later than four hours after occurrence during regular workday hours or no later than two hours of the District workday following an occurrence not during regular District workday hours. The notice shall provide the District information as to causes and corrective action being taken, with a schedule for return to required operating conditions. [District Rule 3.1, §405.3]

District Rule 3.4-New Source Review

This rule applies to all new stationary sources and emissions units and all modifications to existing stationary sources and emissions units which are subject to Rule 3.1, General Permit Requirements, and which, after construction or modification, emit or may emit any affected pollutants. This rule shall not apply to prescribed burning of forest, agriculture or range land, road construction or any other non-point source common to timber harvesting or agricultural practices. The purpose of this rule is to provide for the review of new and modified stationary air pollution sources and to provide mechanisms, including emission offsets, by which authorities to construct to such sources may be granted without interfering with the attainment or maintenance of ambient air quality standards.

Compliance Status: The source has satisfied the provisions of New Source Review. The New Source Review requirements will be imposed on the Authority to Construct (ATCs) issued to the source. The version of the rule used in this evaluation was adopted on August 13, 1997 and is part of the current SIP.

	PROPOSED EMISSION SE	JMMARY FOR N	EW OR MODII	FIED PERMIT	
	<u>Daily</u>			Yearly	
VOC	2.0 lb		0.	01 tons	Use for annual billing
CO	11.0 lb		0.	05 tons	Use for annual billing
NOx	67.6 lb		0.	28 tons	Use for annual billing
SOx	0.1 lb		0.	00 tons	Use for annual billing
PM10	2.0 lb		0.	01 tons	Use for annual billing
		<u>Quarter</u>	l <u>v</u>		
	<u>1s</u>	<u>t</u> 2nd	<u>3rd</u>	<u>4th</u>	
VOC (lb)	16	3 16	16	16	
CO (lb)	92	92	92	92	
NOx (lb)	56	3 563	563	563	
SOx (lb)	1	1	1	1	
PM10 (lb)	16	3 16	16	16	

Previous quarterly potential to emit for modified permit*

	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>4th</u>
VOC (lb)	0	0	0	0
CO (lb)	0	0	0	0
NOx (lb)	0	0	0	0
SOx (lb)	0	0	0	0
PM10 (lb)	0	0	0	ñ

^{*} This is a new emissions unit, therefore the previous potential to emit (PTE) is zero.

Historic	potential	emissions	for me	ndified	nermit*
111010110	potential	CIIII33IQII3	IVI IIII	Julileu	Delliil

	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>4th</u>
VOC (lb)	0	0	0	0
CO (lb)	0	0	0	0
NOx (lb)	0	0	0	0
SOx (lb)	0	0	0	0
PM10 (lb)	0	0	0	0

^{*} This is a new emissions unit, therefore the historic PTE is zero.

<u>Pollutant</u>	<u>Trigger</u> (lb/day)	BACT Proposed (lb/day)	Quarterly Increase	BACT Trigger
VOC	10	2	Yes	No
CO	250	11	Yes	No
NOx	10	68	Yes	Yes
SOx	80	0	Yes	No
PM10	80	2	Yes	No

OFFSETS

Quarterly permitted emissions for other permits at the stationary source*

	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>4th</u>
VOC (lb)	13,315	13,367	13,480	13,548
CO (lb)	207,733	209,636	211,813	212,103
NOx (lb)	51,157	51,306	51,734	52,020
SOx (lb)	7,548	7,554	7,562	7,564
PM10 (lb)	10,565	10,626	10,707	10,731

^{*} Per Policy 28, the calculated PTE for all other permitted units not including emergency use IC engines (see QPTE sheet).

Quarterly permitted emissions for the stationary source including proposed emissions*

	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>4th</u>
VOC (lb)	13,315	13,367	13,480	13,548
CO (lb)	207,733	209,636	211,813	212,103
NOx (lb)	51,157	51,306	51,734	52,020
SOx (lb)	7,548	7,554	7,562	7,564
PM10 (lb)	10,565	10,626	10,707	10.731

^{*} Per Policy 28, since the proposed IC engine is to be used for emergency purposes, the unit's proposed PTE will not be included in the facility's total quarterly PTE calculations.

	Offset triggers				
	<u>1st</u>	2nd	3rd	<u>4th</u>	
VOC (lb)	7,500	7,500	7,500	7,500	
CO (lb)	49,500	49,500	49,500	49,500	
NOx (lb)	7,500	7,500	7,500	7,500	
SOx (lb)	13,650	13,650	13,650	13,650	
PM10 (lb)	13,650	13,650	13,650	13,650	

Quantity of offsets required *

	<u>1st</u>	<u>2nd</u>	3rd	<u>4th</u>
VOC (lb)	16	16	16	16
CO (lb)	92	92	92	92
NOx (lb)	563	563	563	563
SOx (lb)	0	0	0	0
PM10 (lb)	0	n	Λ	0

* The engine meets the requirements of District Rule 3.4, Section 110 and is exempt from the above calculated offset requirements.

MAJOR MODIFICATION

Facility Total Potential to Emit*	Major Source Thresholds
26.26 TPY VOC	25 TPY VOC
404.11 TPY CO	100 TPY CO
87.24 TPY NOx	25 TPY NOx
5.08 TPY SOx	100 TPY SOx
17.81 TPY PM10	100 TPY PM10

^{*} See QTPE sheet.

Last five year emission aggregate*	Major Modification Thresholds
2.11 TPY VOC	25 TPY VOC
3.98 TPY CO	100 TPY CO
9.39 TPY NOx	25 TPY NOx
0.03 TPY SOx	40 TPY SOx
1.31 TPY PM10	25 TPY PM10

^{*} See five year activity sheet.

Result: The proposed modification is not a major modification

PUBLIC NOTICE

"Increase in historic potential to emit"	Exemption level for notification
16 lb VOC/quarter	7,500 lb VOC/quarter
92 lb CO/quarter	49,500 lb CO/quarter
563 lb NOx/quarter	7,500 lb NOx/quarter
1 lb SOx/quarter	13,650 lb SOx/quarter
16 lb PM10/quarter	13,650 lb PM10/quarter

Result: Public notice is not required

Permit Condition: VOC emissions shall not exceed 2.0 lb/day, 16 lb/1st, 2nd, 3rd, and 4th calendar quarter, and 0.01 tons/year. [District Rule 3.4/C-12-129]

Permit Condition: CO emissions shall not exceed 11.0 lb/day, 92 lb/1st, 2nd, 3rd, and 4th calendar quarter, and 0.05 tons/year. [District Rule 3.4/C-12-129]

Permit Condition: NOx emissions shall not exceed 67.6 lb/day, 563 lb/1st, 2nd, 3rd, and 4th calendar quarter, and 0.28 tons/year. [District Rule 3.4/C-12-129]

Permit Condition: SOx emissions shall not exceed 0.1 lb/day, 1 lb/1st, 2nd, 3rd, and 4th calendar quarter, and negligible tons/year. [District Rule 3.4/C-12-129]

Permit Condition: PM10 emissions shall not exceed 2.0 lb/day, 16 lb/1st, 2nd, 3rd, and 4th calendar quarter, and 0.01 tons/year. [District Rule 3.4/C-12-129]

Permit Condition: The maximum amount of diesel consumption shall not exceed 533 gallons/day, 4,440 gallons/1st, 2nd, 3rd, and 4th calendar quarter, and 4,440 gallons/year. [District Rule 3.4/C-12-129]

Permit Condition: The Permit Holder shall only refuel the IC engine with CARB certified diesel fuel. [District Rule 3.4, Title 17 CCR, Section 93115.5 and 40 CFR Part 60.4207/C-12-129]

Permit Condition: The Permit Holder shall not operate the IC engine more than 50 hours per calendar year for maintenance and testing purposes, and such operation shall be scheduled in cooperation with the District so as to limit air quality impact. [District Rule 3.4, §110.1,Title 17 CCR, Section 93115.6(a)(3)(A) and 40 CFR Part 60.4211/C-12-129]

Permit Condition: The Permit Holder shall not operate the IC engine more than 200 hours per calendar year. [District Rule 3.4, §110.2/C-12-129]

Permit Condition: The Permit Holder shall not operate the IC engine for the supplying of power to a serving utility for distribution on the grid. [District Rule 3.4, §110.3/C-12-129]

Permit Condition: The Permit Holder's operation of the IC engine for reasons other than maintenance purposes shall be limited to actual interruptions of electrical power by the serving utility. [District Rule 3.4, §110.4/C-12-129]

Permit Condition: The Permit Holder shall install and maintain a non-resettable hour meter with a minimum display capability of 9,999 hours. [District Rule 3.4, Title 17 CCR, Section 93115.10(d)(1) and 40 CFR Part 60.4209/C-12-129]

Permit Condition: The Permit Holder shall maintain a monthly log of usage that shall list and document the nature of use for each of the following:

- a. Emergency use hours of operation:
- b. Maintenance and testing hours of operation:
- c. Hours of operation for emission testing to show compliance with Title 17 CCR, Section 93115.6(a)(3) and 93115.6(b)(3);
- d. Initial start-up hours; and
- e. Fuel use through the retention of fuel purchase records which indicate that the fuel used in the IC engine is CARB certified diesel fuel or an approved ATCM compliant alternative fuel. [District Rule 3.4 and Title 17 CCR, Section 93115.10(f)(1)/C-12-129]

Permit Condition: The Permit Holder shall maintain the engine and control device according to the manufacturer's instructions or alternate procedures approved by the manufacturer. [District Rule 3.4 and 40 CFR Parts 60.4206 and 60.4211/C-12-129]

Permit Condition: The Permit Holder shall retain the log for a minimum of 60 months (5 years) from the date of entry. Log entries made within 24 months of the most recent entry shall be retained on-site and made immediately available to the District staff upon request. Log entries made from 25 to 60 months from most recent entry shall be made available to District staff within 5 working days from request. [District Rule 3.4, 3.8, §302.6 and Title 17 CCR, Section 93115.10(f)(2)/C-12-129]

District Rule 3.8-Federal Operating Permits

This rule implements the requirements of Title V of the Federal Clean Air Act as amended in 1990 (CAA) for permits to operate. Title V provides for the establishment of operating permit programs for sources which emit regulated air pollutants, including attainment and non-attainment pollutants.

Compliance Status: The Rule was originally adopted on January 26, 1994. The most recent revision dates April 11, 2001 and is part of the current SIP. The source is currently in compliance with the requirements of the rule.

Per Section 102, this rule applies to all major sources, acid rain units subject to Title IV of the Federal Clean Air Act (CAA), solid waste incinerators, and any other sources specifically designated by the rule or US EPA.

The facility is a federal major source due to potential to emit over 25 tons VOC per year, 100 tons CO per year, and 25 tons NOx per year. The facility has an existing Title V Permit. Revisions to the Title V permit will be processed immediately following the approval of this application. The proposed revisions to the Title V permit will concurrently undergo a 30-day public comment period and a 45-day EPA comment period. Enhanced NSR has been requested by the applicant, as allowed by District Rule 3.4. The requirements of this ATC will be incorporated into the Title V permit upon written request from the applicant after all noticing has been done and the project is completed.

The facility's Title V Permit will be issued with all applicable operating, monitoring, and recordkeeping requirements. Per Section 302.6, the source will be required to maintain all required records for a period of five (5) years.

Title V General Requirements - Permit Conditions

The following conditions will not be placed on the ATC or PTO. These requirements will be included in the Title V Operating Permit only.

Permit Condition - Right of Entry:

The permit shall require that the source allow the entry of the District, ARB, or U.S. EPA officials for the purpose of inspection and sampling, including:

- a. Inspection of the stationary source, including equipment, work practices, operations, and emissions-related activity;
- b. Inspection and duplication of records required by the permit to operate; and
- c. Source sampling or other monitoring activities. [District Rule 3.8, §302.10]

Permit Condition - Compliance with Permit Conditions:

The Permit Holder shall comply with all Title V permit conditions. [District Rule 3.8, §302.11a]

The permit does not convey property rights or exclusive privilege of any sort. [District Rule 3.8, §302.11b]

Non-compliance with any permit condition is grounds for permit termination, revocation and reissuance, modification, enforcement action, or denial of permit renewal. [District Rule 3.8, §302.11c]

The Permit Holder shall not use the "need to halt or reduce a permitted activity in order to maintain compliance" as a defense for non-compliance with any permit condition. [District Rule 3.8, §302.11d]

A pending permit action or notification of anticipated non-compliance does not stay any permit condition. [District Rule 3.8, §302.11e]

Within a reasonable time period, the Permit Holder shall furnish any information requested by the APCO, in writing, for the purpose of determining:

- a. Compliance with the permit; or
- b. Whether or not cause exists for a permit or enforcement action. [District Rule 3.8, §302.11f]

Permit Condition - Emergency Provisions:

Within two weeks of an emergency event, the owner or operator shall submit to the District a properly signed contemporaneous log or other relevant evidence demonstrating that:

- a. An emergency occurred;
- b. The Permit Holder can identify the cause(s) of the emergency;
- c. The facility was being properly operated at the time of the emergency;
- d. All steps were taken to minimize the emissions resulting from the emergency; and
- e. Within two working days of the emergency event, the Permit Holder provided the District with a description of the emergency and any mitigating or corrective actions taken; and

In any enforcement proceeding, the Permit Holder has the burden of proof for establishing that an emergency occurred. [District Rule 3.8, §302.12]

Permit Condition -Severability:

If any provision, clause, sentence, paragraph, section or part of these conditions for any reason is judged to be unconstitutional or invalid, such judgment shall not affect or invalidate the remainder of these conditions. [District Rule 3.8, §302.13]

Compliance Certification:

Requirement: Section 302.14(a) of Rule 3.8 requires "the responsible official shall submit a compliance certification to the U.S. EPA and the APCO every twelve (12) months unless required more frequently by an applicable requirement. All compliance reports and other documents required to be submitted to the District by the responsible official shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete."

Streamlining Demonstration: As shown in the following permit conditions, the standard annual compliance certification reporting language of Rule 3.8 (Federal Operating Permits), will be streamlined under the provisions of Rule 3.4 to include specific reporting and submittal dates:

Permit Condition - Compliance Certification:

The Responsible Official shall submit a compliance certification to the U.S. EPA and the APCO every twelve (12) months unless required more frequently by an applicable requirement. The twelve (12) month period will begin on January 1 and end on December 31, and will be due by January 31 for the previous reporting year, unless otherwise approved in writing by the District. All compliance reports and other documents required to be submitted to the District by the responsible official shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

The compliance certification shall identify the basis for each permit term or condition (e.g., specify the emissions limitation, standard, or work practice) and a means of monitoring compliance with the term or condition consistent with Sections 302.5, 302.6, and 302.7 of Rule 3.8. [District Rule 3.8, §302.14b]

The compliance certification shall include a statement of the compliance status, whether compliance was continuous or intermittent, and method(s) used to determine compliance for the current time period and over the entire reporting period. [District Rule 3.8, §302.14c]

The compliance certification shall include any additional inspection, monitoring, or entry requirement that may be promulgated pursuant to Sections 114(a) and 504(b) of the Federal Clean Air Act. [District Rule 3.8, §302.14d]

Permit Condition -Permit Life:

The Title V permit shall expire five years from the date of issuance. Title V permit expiration terminates the stationary source's right to operate unless a timely and complete Title V permit application for renewal has been submitted. [District Rule 3.8, §302.15]

Permit Condition -Payment of Fees:

An owner or operator shall pay the appropriate Title V permit fees on schedule. If fees are not paid on schedule, the permit is forfeited. Operation without a permit subjects the source to potential enforcement action by the District and the U.S. EPA pursuant to Section 502(a) of the CAA. [District Rule 3.8, §302.16]

Permit Condition -Permit Revision Exemption:

No permit revision shall be required under any approved economic incentives, marketable permits, emissions trading, and other similar programs or processes for changes that are provided for in the permit. [District Rule 3.8, §302.22]

Permit Condition -Application Requirements:

An owner or operator shall submit a standard District application for renewal of the Title V permit, no earlier than 18 months and no later than six months before the expiration date of the current permit to operate. [District Rule 3.8, §402.2]

An owner or operator shall submit a standard District application for each emissions unit affected by a proposed permit revision that qualifies as a significant Title V permit modification. The application shall be submitted after obtaining any required preconstruction permits. Upon request by the APCO, the owner or operator shall submit copies of the latest preconstruction permit for each affected emissions unit. The emissions unit(s) shall not commence operation until the APCO approves the permit revision. [District Rule 3.8, §402.3]

An owner or operator shall submit a standard District application for each emissions unit affected by the proposed permit revision that qualifies as a minor permit modification. The application shall be submitted after obtaining any required preconstruction permits. The emissions unit(s) shall not commence operation until the APCO approves the permit revision. In the application, the owner or operator shall include the following:

- a. A description of the proposed permit revision, any change in emissions, and additional applicable federal requirements that will apply;
- b. Proposed permit terms and conditions; and
- c. A certification by a responsible official that the permit revision meets criteria for use of minor permit modification procedures and a request that such procedures be used. [District Rule 3.8, §402.4]

Permit Condition -Permit Reopening for Cause:

Circumstances that are cause for reopening and revision of a permit include, but are not limited to, the following:

- a. The need to correct a material mistake or inaccurate statement;
- b. The need to revise or revoke a permit to operate to assure compliance with applicable federal requirements;
- c. The need to incorporate any new, revised, or additional applicable federal requirements, if the remaining authorized life of the permit is 3 years or greater, no later than 18 months after the promulgation of such requirement (where less than 3 years remain in the authorized life of the permit, the APCO shall incorporate the requirements into the permit to operate upon renewal); or
- d. Additional requirements promulgated pursuant to Title IV as they become applicable to any acid rain unit governed by the permit. [District Rule 3.8, §413.1]

Permit Condition -Recordkeeping:

The permit holder shall record maintenance of all monitoring and support information required by any applicable federal requirement, including:

- a. Date, place, and time of sampling;
- b. Operating conditions at the time of sampling;
- c. Date, place, and method of analysis; and
- d. Results of the analysis. [District Rule 3.8, §302.6a]

The permit holder shall retain records of all required monitoring data and support information for a period of at least five years from the date of sample collection, measurement, report, or application. [District Rule 3.8 §302.6b]

Permit Condition -Reporting Requirements:

Any deviation from permit requirements, including that attributable to upset conditions (as defined in the permit), shall be promptly reported to the APCO. For the purpose of this condition prompt means as soon as reasonably possible, but no later than 10 days after detection.[District Rule 3.8, §302.7a]

A semi-annual monitoring report shall be submitted at least once every six (6) consecutive calendar months and shall identify any deviation from permit requirements, including that previously reported to the APCO pursuant to Section 302.7(a) of Rule 3.8. Unless otherwise approved in writing by the District, the following shall apply:

- a. The first six (6) month monitoring period will begin on January 1 and end on June 30, and the report will be due by July 31 of the reporting year; and
- b. The second six (6) month period will begin on July 1 and end on December 31, and the report will be due on January 31 of the

following calendar year.

All reports of deviation from permit requirements shall include the probable cause of the deviation and any preventive or corrective action taken. [District Rule 3.8, §302.7c]

<u>District Rule 3.20-Ozone Transport Mitigation</u>

This emissions unit is exempt from Rule 3.4, Sections 302 and 303. Therefore, per Section 110.3 of this rule, this application is exempt from the requirements of this rule.

<u>Title 17 CCR Section 93115-Airborne Toxic Control Measure (ATCM) for Stationary Compression Ignition Engines</u>
This state regulation requires that any new stationary emergency diesel fired engine installed after January 1, 2005 have a PM emission factor less than or equal to 0.15 g/bhp-hr. As proposed, the engine meets this requirement.

The regulation also requires that the engine comply with the following:

- The engine owner or operator will only refuel the engine with California Air Resources Board certified diesel fuel.
- The engine shall not operate more than 50 hours per year for maintenance and testing purposes.
- A non-resettable hour meter shall be installed with a minimum display capability of 9,999 hours.
- The owner or operator is required to maintain a monthly log that lists the following information: emergency hours of operation, maintenance and testing hours of operation, emission testing hours of operation, initial startup hours, and fuel use through fully documented purchase records.
- The log shall be retained for a minimum of 36 months from the date of entry. Log entries made within 24 months of the most recent entry shall be retained on site and made immediately available to the District. Log entries made from 24 to 36 months from the most recent entry shall be made available to District staff within 5 working days from the request.

NSPS Applicability-40 CFR, Part 60, Subpart IIII, Standards of Performance For Stationary Compression Ignition Internal Combustion Engines

This subpart sets standards for the manufacturers of specified stationary compression ignition engines and owners and operators of stationary compression ignition engines that commence construction or modify or reconstruct their engine after July 11, 2005.

Compliance Status: This subpart applies to manufacturers, owners and operators of specified stationary compression engines. This is an application for an emergency stationary compression engine manufactured after April 1, 2006 and is not a fire pump engine. The source is currently in compliance with the requirements of the Subpart.

Requirement: The engine has a displacement less than 10 liters per cylinder, therefore per §60.4205(b) the engine is subject to the emissions standards outlined in §60.4202. As demonstrated below the engine meets this requirement.

ļ	Emission Rate (g/bhp-hr)	Allowable Rate (g/bhp-hr)*	Compliance
NMHC + NOx	2.84	3.0	Yes
CO	0.45	2.6	Yes
PM	0.08	0.15	Yes

*CFR 89.112

Streamlining Demonstration: The Tier III standard for this engine class and category is 3.0 g/bhp-hr for VOC + NOx, 2.6 g/bhp-hr for CO and 0.15 g/bhp-hr for PM. Subpart IIII emission standards are subsumed by the federally enforceable District Rule 3.4 requirement of an EPA certified Tier III engine for P-55-12. The District Rule 3.4 requirements is equivalent to the emission standards outlined in Subpart IIII.

Permit Condition: An emergency internal combustion engine, John Deere IC engine, Model No. 6090HFG86, 463 Brake Horsepower, to power an emergency generator [District Rule 3.4/C-12-129]

Requirement: In addition the subpart requires the owner/operator to comply with the following for this engine class and category:

- The engine and any control device must be maintained according to the manufacturer's instructions or procedures approved by the manufacturer (\$60,4206 and \$60,4211).
- The engine diesel fuel must meet the requirements of 40 CFR 80.510 for nonroad diesel fuel (§60.4207).
- The engine must be installed with a non-resettable hour meter prior to start-up (§60.4209).
- Maintenance and readiness testing is limited to 100 hours per year (§60.4211).

Subsuming Demonstration: The state requirements for diesel and maintenance testing are more stringent than the federal limit. Therefore, the federal requirement will be met by:

- a. The District Rule 3.4 requirement for the EPA certified Tier;
- b. The Permit Holder shall maintain the engine and control device according to the manufacturer's instructions or alternate procedures

approved by the manufacturer:

- c. The Permit Holder shall only refuel the IC engine with CARB certified diesel fuel;
- d. The Permit Holder shall install and maintain a non-resettable hour meter with a minimum display capability of 9,999 hours;
- e. The Permit Holder shall not operate this internal combustion engine more than 50 hours per calendar year for maintenance and testing purposes, and such operation shall be scheduled in cooperation with the District so as to limit air quality impact.

Permit Condition: The Permit Conditions satisfying these requirements are listed in Section 3.4.

Permit Condition: The Permit Holder shall comply with the applicable requirements of 40 CFR Part 60, Subpart IIII. [40 CFR Part 60, Subpart IIII and 40 CFR Part 63, Subpart ZZZZ]

NSPS Applicability-40 CFR, Part 63, Subpart ZZZZ, National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines

The provisions of this subpart apply to owners or operators of stationary reciprocating internal combustion engines at major or area sources of Hazardous Air Pollutants (HAP).

Compliance Status: This subpart applies to engines operating at any stationary source. This is an application for a new compression emergency engine at an area source. Engines constructed or reconstructed after June 12, 2006 meet the rule requirements by demonstrating compliance with Subpart IIII. The source is currently in compliance with the requirements of the Subpart.

Requirement: An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.

- (1) A new or reconstructed stationary RICE located at an area source;
- (2) A new or reconstructed 2SLB stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
- (3) A new or reconstructed 4SLB stationary RICE with a site rating of less than 250 brake HP located at a major source of HAP emissions;
- (4) A new or reconstructed spark ignition 4 stroke rich burn (4SRB) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
- (5) A new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions which combusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis;
- (6) A new or reconstructed emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions;
- (7) A new or reconstructed compression ignition (CI) stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions. [40 CFR 63.6590]

Permit Condition: The Permit Holder shall comply with the applicable requirements of 40 CFR Part 60, Subpart IIII. [40 CFR Part 60, Subpart IIII and 40 CFR Part 63, Subpart ZZZZ]

District Risk Management Plan and Risk Assessment Guidelines (RMPRAG)

As required by the District's RMPRAG Policy, the project's health risk will be reviewed. The review will evaluate the Hazardous Air Pollutant (HAP) emissions, and because the engine was installed after March 3, 2004, the risk from diesel particulate will also be quantified.

1. HAP Emissions - Excluding Diesel Particulate:

	Emission Factor *	Emissions	Screening Level	Less Than
Pollutants	(lb/MMBtu)	(lb/year)	(lb/year)	Screening
Benzene	9.33E-04	0.57	6.70	Yes
Toluene	4.09E-04	0.25	38,600.00	Yes
Xylenes	2.85E-04	0.17	57,900.00	Yes
Propylene	2.58E-03	1.57	52.00	Yes
1,3-Butadiene	3.91E-05	0.02	1.10	Yes
Formaldehyde	1.18E-03	0.72	33.00	Yes
Acetaldehyde	7.67E-04	0.47	72.00	Yes
Acrolein	9.25E-05	0.06	3.90	Yes
Benz[a]anthracene	1.68E-06	0.00	0.04	Yes
Benzo[b]fluoranthene	9.91E-08	0.00	0.04	Yes
Benzo[a]pyrene	1.55E-07	0.00	0.04	Yes
Dibenz[a,h]anthracene	5.83E-07	0.00	0.04	Yes

Indeno[1,2,3 -cd]pyrene	3.57E-07	0.00	0.04	Yes
Naphthalene	8.48E-05	0.05	270.00	Yes
* Based on AP-42, Table 3.3-2 (10/96).				
Since the emissions from the above HAPs are	below the	screening levels, no fu	rther toxic review is requi	ired of them.
2. Diesel Particulate Cancer Risk Calculation	on:			
<u>Dispersion</u>	<u>Data</u>	<u>Units</u>	Formula Symbol	Reference
Residential Emission Concentration, X	/Q =	546.2 μg/m³	CR	Screen3
Worksite Emission Concentration, X	//Q =	546.2 µg/m ³	CW	Screen3
Conservatively, the District will use the unit's	maximum	dispersion concentratio	n to evaluate both the re	
risks. As documented, the maximum concentr				
<u>Individual Cancer Risk (</u>	ICR)	<u>Units</u>	Formula Symbol	Reference
Diesel Particulate Unit Risk Fac		3E-04 (unit-less)	UR	OEHHA
Dispersion Annualizing Factor		0.10 (unit-less)	AF	District
Residential, IC		3.849 in a million	ICR	ER*UR*CR*AF
Worksite, K		2.529 in a million	ICW	(46/70)*ER*UR*CW*AF
Maximum, IC		3.849 in a million	Max Risk	Max (ICR, ICW)
The Screen3 dispersion concentration for bo	th the resid	ential and the worksite	receptors are annualized	d by a factor of 0.10.
3. Evaluation of Best Available Control Tec				
<u> </u>	s T-BACT F	Required (Max Risk > 1	in a million):	Yes
		ACT been proposed for		Yes
Based on the T-BACT proposal and the	maximum	ICR value calculated, ti	he project is: Ap	provable
Effective March 3, 2004, the District determine	ed that T-B	ACT for a diesel fired e	emergency engine is eith	er: 1) the engine

^{*} Effective March 3, 2004, the District determined that T-BACT for a diesel fired emergency engine is either: 1) the engine manufacturer's PM10 emission certification equal to or less than 0.15 gr/hp-hr; or 2) the use of a particulate control device (e.g. Diesel Particulate Filter (DPF), etc.) to reduce an engine's particulate matter exhaust emissions to or less than 0.15 g/bhp-hr

As proposed the project meets the requirements of the District's RMPRAG Policy, therefore no further toxics review is required.

COMMENTS:

The application does not trigger offset or public notice requirements.

BACT is triggered for NOx emissions. Per BACT Determination 663-1 the equipment as proposed meets the BACT requirements for this class and category of source.

As discussed above, the application also meets the T-BACT requirements for this class and category of source.

Copies of the ATC, Title V Statement of Basis Addendum/Evaluation, and proposed Title V permit changes will be mailed to the California Air Resources Board (ARB) and the United States

Environmental Protection Agency (US EPA) Region IX.

RECOMMENDATIONS:

Submit for public and regulatory review.

Engineer:

Reviewed by: That Ye has

YOLO-SOLANO AIR QUALITY MANAGEMENT DISTRICT
1947 GMING COMP. STUB-107 DM: OA 95818

Quarterly Potential To Emit Determination **New Source Review**

Evaluation to be used on existing permits to obtain their quarterly PTE

SIC Code # 8221

Date of Initial Quarterly PTE Determination: 04/13/1998
Date of Previous Quarterly PTE Determination: 10/02/2012
Date of Current Quarterly PTE Determination: 12/20/2012

Engineer: Alex Huth

Facility Name: University of California, Davis (UCD)

CURRENT APPLICATIONS: Location: Main UCD Campus

ATC's C-12-125, C-12-128, C-12-129, C-12-130

PTO's

	Emergency IC Engine (111 BHP)	Enleightly ic Engine (os BHP)	Emergency IC English (636 BHP)	Emergency IC Engine (co phr)	Emergency (C Engine (227 OHF)	Emergency (C Engine (220 DAP)	Emergency IC Engine (228 BUD)	Emergency (C Engine (6/3 BHD)	Emergency IC Engine (1200 BHP)	Emergency IC Engine (750 BHP)	Emergency IC Engine (560 BHP)	Emergency IC Engine (440 BHP)	Post-pro	Post-proj	Pre-proj	Paint Booth	Boiler#3	Woodworking (Physical Plant)	Boiler, NG Fired	Boller #2	Boiler, NG Fired	Boiler #1	Boiler	Gasoline Storage & Dispensing	Boiler (180 MMBtu/hr)	Incinerator Vet. Lab.	Boiler #2	Bollers	Boiler, NG Fired	Boilers	Boilers	Boiler - Steam Generation	Boilers - Natural Gas	Rollers Natural Cas	Boiler	Boiler -Natural Gas for Steam	Boiler	Boiler - Steam Generation	Boller - Steam Generation	Boiler - Steam Generation	Boller - Steam Generation	Boilers NG Fired	Gasoline Storone & Dispersion	Boiler (40)	Wastewater Treatment Plant (WWTP)	Boiler (2.1 MMBtwhr)	Landfill Gas Collection & SVE	Boiler, NG Fired	Cooling Towers	Gasoline Storage & Dispensing	Process Description	
	P-109-95(a)	P-109-01	P-108-95(a)	P-108-01	P-10/-95(a)	P-103-94(a)	102-94(a)	102-03	P-101-94(a)	P-101-04(a)	P-100-94/a)	P-1-00	ost-project Policy 28 PTE	Post-project SSPE (lb/year)	Pre-project SSPE (lb/year)	P-96-80(a1)	P-96-00	P-95-80(a1)	P-91-02	P-91-00	P-90-02	P-90-00	P-89-00	P-84-93(a1)	P-83-06	P-81-89(a)	P-87-98	P-67-00(a)	P-85-03	P-64-03(a)	D-62-06/61	P-83-00	7-04-98	P-54-90(a)	P-54-00(a)	P-52-00	P-5-00	P-48-96	P-47-98	P.45-96	P-44-11	-42-/0(83)	P-3-00	P-28-03	P-22-00(a)	P-16-08	P-14-98	P-101-03	P-101-02	P-1-81(a3)	Current	
	Сħ	34	25	34	17	115	94	808	BIT B	202	39.2	13,315	10,315			1,715	1,077	0	⇒	558	=	555	Ž	ω	1.667	3 5	2 6	2 6	3 4	àà	3 8	ಕಿಪ	3 7	0	36	24	12	ಪ	3 7	4 8	:	2:0	8	124	78	25	6,089	СЛ	0	(IDs)	QTR 1	í
	сл	34	25	34	17	115	84	108	119	282	202	13,367	13,367			1,715	1,089	0	12	583	ಸ	583	156	ω (i	1898	2 6	5 6 5 6	3 6	3 8	\$ 5	1 2	2 23	17	0	36	24	2	a	28 2	. 4	. 6	220	2	83	78	25	6,157	On	۰ ;	(E)s)	QTR 2	<u> </u>
	CII	12	25	34	57	115	94	108	119	282	2	13,460	13,480			1,715	; <u>1</u>	0	12	587	12	567	15g (<u>-</u>	1 704	34 6	3 6	8 6	8 2	2	1 %	ដ	17	0	22	2	25	i 10	8 5	4 4	0	220	4	2	78	28	0,22	on	0 8	_	QTR3	VOC Emissions
	cn	34	25	34	17	115	94	108	119	282	8 10	13,548	13,548			1,715	1,101	0	12	587	12	787	ž ·	4	3 5	2 8	2 5	3 &	3 6	79	24	ಚ	17	0	35	24	12 7	a	\$ 0	34	1	120	#	127	78	26	6,225	cn	0 8	(lbs)	OTR 4	8
	0.00	0.02	0.01	0.02	0.01	0.06	0.05	0.05	0.06	0.14	0.00	26.26	26.26	52,520	52,520	3.37	2.18	00	0.02	20	0.02	980	2 0	3 5	2 0,0	0.20	0.08	0.06	0.04	0.16	0.05	0.03	0.03	0.00	0.07	0.05	0.02	0.03	0.03	0.07	0.02	0.44	0.09	0.19	0.10	0.05	12.31	0.01	0.00	Clark Charles	Annual	
	882	9	3,132	91	167	305	680	179	417	748	163	207,733	207,733			0	20.285	0 }	198	21 710	190	84 740	9 0	, , ,	3	787.0	433	218	1,015	248	101	8	88	0	287	g :	8 :	2 2	20 27	145	99	0	664	486	•	8	80 5	8	0 0	(lbs)	QTR 1	7
	83	91	3,132	91	167	305	680	179	417	748	163	209,636	209,636			0	20.418	- [202	93 943	202	0,470	3	1,000	2	6,384	438	221	1,027	251	Ŕ	8	69	0	290	152	8 8	3 5	3 8	147	40	0	872	236	0	91	B12	3 4	٥ ٥) (III	QTR ₂	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	583	0	3,132	91	167	305	680	179	417	748	163	211,813	211,813			0	20.551	o \$	204	200	204	0,000	n c	Abc't	3	8,476	443	223	1,038	254	103	71	70	•	193	Ž S	8 8	A 7	į s	148	49	٥	879	238	0	8	829	8 4		(lbs)	OTRS	CO Emissions
400	200	9	3,132	91	167	305	680	179	417	748	163	212,103	212,109			0	20 551	2 5	200		ouc,co	0,000		1,549	24	8,476	443	223	1,038	254	103	71	71	0	293	<u>1</u>	8 8	2 1	8	148	99	•	679	477	0	2	9 6	8 4	> -	2 2 2 2	OTR 4 (lbs)	98
0.00	0 0	0.05	1.57	0.05	80.0	0 15	0.34	0.09	0.21	0.37	0.08	404.11	404,11		0.00	9 6	38.40	3 6	163.74	2 2	0.40	16,86	0.00	3.07	0.17	16.80	0.88	0.44	2.08	0.50	0.20	0.14	0.14	0.00	0.58	0.31	0 0	0.34	0.13	0.29	0.15	0.00	1.35	0.71	0.00	0.18	1 200	0.00	0.00			
282	3 6	207	1.861	207	636	1.414	3,086	3,508	3,767	3,472	1,275	51,157	51,157		,	9,97	9	- a	73,587	8	13,587	1,384	-	2,565	1,053	1,022	510	119	104	251	480	330	324	0	236	802	308	1 8	297	601	40		791	511	0	132	8 8	3 <		(Bbs)		1
SAC	200	207	1.861	207	636	1.414	3,086	3,508	3,767	3,472	1,275	51,306	51,308			0,002		. 8	13,897	8	13,897	1,396	0	2,591	1,053	1,033	522	121	105	254	485	334	328	0	238	808	797	819	300	669	24	0	800	258	0 8	133	9 8	3 c		\vdash	_	
282	102	300	1 8 3 1	207	636	1 414	3.086	3,508	3,767	3,472	1,275	51,734	51,734			10,101		9 10	13,807	9	13,807	1,407	0	2,817	1,053	1,044	527	122	107	258	490	373	331	0	241	815	200	828	304	707	24	0	808	261	0 [128	3 2	1 0		_	QTR3	NOx Emissions
383	707	207	1,681	207	636	1 414	3 086	3.508	3,767	3,472	1,275	52,020	52,020			10,131		100	13,807	100	13,807	1,407	٥	2,617	1,053	1,044	527	122	107	256	490	338	331	0 !	241	815	265	828	304	707	8	0	808	522	ء ج	125	3 2	! c	, ,	<u> </u>	QTR4	in a
0.20	0.10	0.80	0 0	0.05	0 2 .	0 74	154	1.75	1.88	1.74	0.64	87.24	87.24	174,400	0.00	15,83	0.00	0.20	21.93	0.20	21.93	2.25	0.00	5.20	2.10	2.10	1.05	0.24	0.21	0.51	0.97	0.67	0.66	0.00	1.62	0.66	0.52	1.64	0.60	1.40	0.07	0.00	1.60	0.78	20.22	3 .00	0.11	0.00	0.00	(TPY)	_	
0	α		0	p 7	6 6	å 8	ŋ :	97 !	<u>6</u>	å	36	7,548	7 540		-	1,688	0	N	2,601	2	2,601	281	0	253	ω	38	ω	۵	22	N	ω	N	N	•	٠ ،	» N	ı Nı	cn	N	cn	_	0	ch (ω «	۰ د		i -			(lbs)	OTR 1	1
0	6		0 0	P 0	ôô	6 6	g 9	97 :	61 -	en l	36	7.554	7 554			1,889	0	N	2,603	Ŋ	2,603	201	٥	256	ω	38	u	ω	N	N	ω	N	N	o 4		e No	s Na	ch	2	o	-	0	U1 -		9 6	. 4	i -	. 0		(lbs)	QTR 2	
0	on	0	ο α	0 0	5 0	3 2	n e	07 5	D 1	45	36	7.582	7 465		٥	1,690	٥	N	2,606	13	2,605	261	0	258	ω	38	ω	ω	N	N	ω	N)	ν,	.		» N	N	CR	N	Ut	٠ ,	0	en -	٠ ،	3 6	. &		0	٥	(B)	QTR 3	
0	8	0	, c	à	ō	2 2	n 9	2 5	2 4	45	36	7 564	7 564			1,690	0	N	2,805	N	2,605	261	0	258	ω	38	ω	ω	2	N	ω	N I	N 1	- 4		1 1/3	ы	ch	N	O1	٠ .		C7 C	۵ د	s 64	. 4	_	0	0	(lbs) 4		
0.00	0.00	0.00	0.00	10.0	0.01	0,03	0.00	0.00	0.02	0.02	000	- O.O.	2		0.00	1.02	0.00	0.00	1.55	0.00	1.55	0.16	0,00	0,51	0.01	0.10	0.01	0.01	0.00	0.00	0.01	0.00	0.00	3 5	0.01	0.00	0.00	0.01	0.00	0.01	0.00	9 !	0.00	9 6	9	0.09	0.00	0,00	0.00	(Yell)	Annual	
12	30	8	30	25	100	283	8 8	ŧŧ	240	2/4	10,000	2000	5		2	1,002	407	21	1,721	21	1.721	242	0	2,948	87	388	36	37	8	21	<u> </u>	8	8 9	2 4	3	39	32	97	38	83 (-	> 1	B 6	3 0	34	0	7	ź	0	(lbs)	OTR 1	1
2	30	8	30	25	100	283	20	2 8	240	2 0 0 0	10.020	10,626			54	2,000	412	2	1,730	21	1,730	244	0	2,974	87	383	6	38	26	21	27	8 6	6 1	2 8	1 23	28	83	98	36	92 (. c	- :	2 8	; c	35		7	158	0	(lbs)	OTR	
2	30	00	30	25	100	283	25	ŧ	246	200	10,707	10,707			54	2,025	416	2	1,739	<u>13</u>	1,739	246	0	3,000	87	397	8	æ !	27 !	21 8	8	4 4	5 8	8 8	34	39	10	99	37	8 4	o c	9 9	2 4		35	0	00	158		(lbs)	PM10 Emissions	
2	30	80	30	25	100	283	25	40	246	20	10,731	10,731			Z.	2,026	416	21	1,739	21	1,738	246	0	3,000	87	347	8 8	3 !	27	2 8	B :	£ ŧ	3 6	2 8	2	30	22	99	37	8 8	, -	. =	2 8	; c	35	0	8	158	٥	(Bs)	OTD 4	
0.00	0.01	0.00	0.01	0.01	0.05	0.14	0.01	0.02	0.12	0,03	17 81	17.B1			0.11	3.28	0.83	0.04	211	0.04	2.11	0.45	0.00	5.00	0,18	08,0	0.08	900	0.05	0 2				0,10															ŀ	Annual (YPY)	_	

	Emergency IC Engine (290 BHP)	Emergency IC Engine (750 BHP)	=	Emergency IC Engine (1,550 BHP)	Portable Emergency ICE (311 BHP)	Portable Emorganov (CE /341 BBD)	Emergency IC Engine (207 BHP)	Emergency IC Engine (490 BHP)	Emergency IC Engine (227 BHP)	Emergency IC Engine (470 BHP)	Emergency (C Engine (1,194 BHP)	Emergency IC Engine (465 BHP)	Emergency IC Engine (617 BHP)	Emergency IC Engine (100 ptr)	Emergency IC Engine (166 BHP)	Emergency IC Engine (904 RHP)	Emergency IC Engine (453 B BHP)	Emergency IC Engine (158 BHP)	Emergency IC Engine (360 BHD)	Emergency IC Engine (415 BHP)	Emergency IC Engine (364 BHP)	Emergency IC Engine (145 BHP)	Emergency IC Engine (1,252 BHP)	Emergency IC Engine (923 BHP)	Emergency IC Engine (1,207 BHP)	Portable Emergency ICE (118 BHP)	Emergency IC Engine (1 207 BHP)	Portable Emergency ICE (119 BUD)	Emergency CErcipo (64 BUB)	Eligina (I.	o c	cinging	Emergency IC Engine (97.3BHP)	ngine (2	IC Engine	Emergency IC Engine (453.8 BHP)	IC Engine	IC Engine	C Engine (4	Standby IC English (770 pmr)	C Engin	Emergency IC Engine (207 BHP)	IC Engin	icy IC Engine	IC Engine (53	¦' ਵ	Emergency IC Engine (170 BHP)	<u>"</u>	IC Engine (s	Standby IC Engine (1,120 BHP)	Emergency IC Engine (380 BHP)		Emergency IC Engine (180 BHP)	=	Emergency IC Engine (124 BHP)	=	= -	Emergency IC Engine (1, 250 BHP)	Emergency IC Engine (82 BHP)	Engine	IC Engine	IC Engine	IC Engine	IC Engine	ਨ ਹ	Emergency io Engine (170 BHP)	C Engine	Engin	Emergency IC Engine (1,135 BHP)	Engin
	P-90-94(a)	P-9-01(a)	P-89-94(a)	P-88-99	P-87-01	P-84-02	P-83-02	P-82-02	P-8-01(a)	P-74-05	P-72-11	P-71-00	P.7.11	F-69-86(a)	B-60 06/21	B-60-00	0.07-09	P-87-00	P-03-03	P-61-00	P-59-07	P-59-05	P-54-97	P-54-09	P-53-07	P_52_00/a)	P-57-99(B)	P-51-0/	P-50-99(a)	T-60-07	P-49-07	P-44-10	P-43-10	P-42-97	P-42-10	P-4-09	P-38-05	P-32-99	P-32-98	P-3-09	P-29-96(a)	P-209-95(a)	P-2-09	P-2-00	P-18-08	P-17-09	P-17-02	P-16-98	P-16-09	P-15-04	P-126-95(a)	P-125-95(a)	P-123-95(a)	P-122-95(a)	P-121-95(a)	P-121-03	P-120-95(a)	P-120-01	P-119-85(a)	P-119-03	P-118-95(a)	P-118-03	P-117-95(a)	P-117-03	P-115-03	P-114-02	P-113-95(a)	P-112-95(a)	P-111-01	P-110-95(a)
	146	22	139	4.	n di	7	74	15	110	22 9	2 4		14	22	8 8	3 20	3 ~	1 01	â	55	26	12	73	21	212	200	59	10	59	85	20	87	2	27	7	16	20 :	7 1	64	340	196	64	22	16	6 6	, m	75	47	л 64 2	128	80	7 0	° 10	4	₃	75	2 62	2 /4	<u> </u> ω	16	cs	10	4	16	47 0	- 8	ယ	2	70	16
	146	22	130	2 2	, g	7	14	ti i	119	2 0	D 4	27	14	22	33	20	3 ~	4 m	45	44	26	12	73	2 5	3 12	713	59	1 10	59	85	20	87	2	27	7	i 6	20	73 5	5 2	340	196	64	19	i 6	3 8	, o	75	47	5 4	128	80	7	, 0	4	ω	75	2 64	74	; w	16	ယ	10	4	6 +	47	30	ω	2	2	16
	146	23	130	a g	3 8	7	14	55	119	9 0	0 1	2/	1 4	22	8 8	20	77	6	45	55	26	12	73	2 14	9 0	213	59	6	59	85	20	87	2	27	7	16	8 8	73 9	64	340	196	64	2	5 6	8 6	o	75	47	2 2	128	80	7	70	4	ω	75	324	74	ω	16	ω	10	4	16 4	47 0	30	ω	20	70	18
	146	22 53	130	g	3 55	7	14	5	119	9 0	14	27	14	22	8	20	7	6	45	55	26	12	73	21 2	3 2	213	59	10	50	85	20	87	2	27	7	16 16	8 2	73 9	2 2	340	196	64	12	16 20	8 8	6	75	47	00 0	128	80	2 8	10	4	ω ;	75 (%	976	74	3	16	ω	ö	4	i 4	47	30	ယ	2	70	16
	0.07	0.01	0.02	0.03	0.03	0.00	0.01	0.01	0.08	0.03	0.03	0.01	0.01	0.01	0.02	0.01	0.00	0.00	0.02	0.03	0.01	0.01	0.04	0.1	0.03	0.11	0.03	0.01	0.03	0.04	0.01	0.04	0.00	0.01	0.00	0.01	0.04	0.03	0.04	0.17	0.10	0.03	0.00	0 0	0.02	0.00	0.04	0.02	0.04	0.06	0.04	0.00	0.00	0.00	0.00	0.00	0.76	0.04	0.00	0.01	0.00	0.01	0.00	0.02	0.00	0.01	0.00	0.00	0.04	0.01
Note	387	201	970	110	110	728	78	84	417	628	246	162	248	241	122	140	91	89	106	1,366	384	80	1.573	318	158	319	158	31	158	343	171	363	43	55	80	13 8	S 24	36	354	679	521	183	9 5	617	8 8	48	637	73	275	316	168	1,049	1,224	450	383	212	904/	212	435	306	383	88	446	306	595	100	383	294	250	2016
State Color State Stat	387	201	2,866	110	110	728	78	84	447	628	246	162	246	241	122	140	91	89	106	1,366	364	48	1.573	319	158	319	158	31	158	343	171	363	43	55	60	13 8	554 66	364	354	679	521	183	31	E17	80	48	637	73	275	316	168	1,049	1.2	450	383	212	904	212	435	306	383	æ ;	416	ans FP.1	595	100	383	294	250	2016
Mart 175	387	201	2,866	110	110	728	78	84	110	628	246	162	246	241	122	140	91	3	106	1,366	384	48	1 573	319	158	319	158	31	158	343	171	363	43	55	60	131 98	88	30/	354	679	521	183	31	60	80	48	637	73	275	316	168	1,048	1,224	450	383	249	647	212	435	306	383	88 3	446	133	595	100	383			
No. 10. Section Sect	387	201	2,866	110	110	728	78	84	110	628	248	162	246	241	122	140	91	89	106	1,366	384	48	1 673	319	158	319	158	31	158	343	171	363	43	55	8 9	131	354	307	354	679	521	183	a 6	60	80	48	637	330	275	316	168	1,049	1,22	450	383	242	847	212	435	306	383	88	446	133	595	100				
State Stat																																																																			0,	0.0	0 1.	
Color Colo	_		-	-			-	-	-	_	_	_	_	-	_		-		_	_		-	_		-		_		-	_	-	_		_	_		-	-			_	_	-	-	-		_	_	_		_		-				-	-	_	-	_		-		-	-	22	17	3 1.1	
Color																																																																						
STATUME COLOR CO																																																																						
1989 1989																																																									-	_												
No.																																																																						
60 60<	-			_	_	_	-	-	_	-			-			-	-				-	-	_	-		-	_	_	_	-	_			•		-		_				_			_	_	-			_	-	_		_		_	_	_			_	_	-					_	_	_
No.																																																																						
92 0.000 6 5 5 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9																																																																						
1000 5 5 5 5 5 5 5 5 5																																																																						
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6																																																																						
5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-	-	-	-	_	_	_	_	_	-	_	_	-	-	-	_		-	-		_	-	_	_	-			-	-	-		-	-	-	-	-	W.	_	-						_	-		_	_		_	_	_	_	_		_			_	_		_		-	_	_	_	_	
5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7																																																																						
5																																																																						
0.000 0.000																																																																						

Post-project Policy 28 PTE Pre-project Policy 28 PTE Post-project Policy 28 PTE Post-project Policy 28 PTE Post-project Policy 28 PTE Post-project Policy 28 PTE	SUMMARY Pre-prolect SSPF (Infoact		Rule 3.2 Exempt Units Total PTE (Ib/year	Enladerick ic Engine (385 PHF)	chiefers is chighte (400 pmr)	Emergency (C Engine (198 BHP)	Emergency iC Engine (685 BHP)	Emergency IC Engine (550 BHP)	Emergency IC Engine (207 BHP)	Emergency IC Engine (740 BHP)	Emergency IC Engine (244 BHP)	Emergency IC Engine (150 BHP)	Emergency IC Engine (415 BHP)	Emergency IC Engine (289 BHP)
VE (lb/year) licy 28 PTE licy 28 PTE licy 28 PTE OTAL PTE	OF (lh(voar)		TE (Ib/year)	C-12-130	0-12-129	C-12-126	C-12-125	C-12-89	P-99-94(a)	P-96-94(a)	P-95-94(a)	P-94-94(a)	P-92-94(a)	P-91-94(a)
13,315 13,315 19,015	QTR 1 (lbs)			15	16	7	81	32	64	108	123	15	209	145
13,387 13,387 18,067	QTR 2			15	6	7	8	32	64	108	123	15	209	146
13,480 13,480 19,180	QTR3 (lbs)			ti	16	7	81	32	92	108	123	15	209	145
13,548 13,548 18,248	QTR 4			15	6	72	81	32	64	108	123	ಕ	209	145
52,520 28.28 28.28 28.28	(Yell)		5,880	0.01	0.01	0.00	0.04	0.02	0.03	0.05	0.08	0.01	0.10	0.07
207,733 207,733 246,969	QTR 1	1		119	92	91	112	211	183	783	326	177	55.00	386
209,636 209,636 249,872	QTR 2 (lbs)			110	92	91	112	211	183	783	356	177	554	388
211,813 211,813 251,048	CO Emissions QTR3 Q (lbs) Q			119	92	91	112	211	183	783	306	177	55.00	8 8 8 8
212,103 212,103 251,336	QTR 4 (lbs)			119	92	91	112	211	183	783	306	177	564	300
404.11 404.11 423.92	Annual (TPY)			0.06	0.05	0.05	0.06	0.30	0.09	0 20	0.00	000	0 0	5
51,157 51,157 186,405	QTR 1			441	563	195	820	604	1004	3 1,0	4 542	770	ZB/.1	. 700
51,306 51,306 186,553	QTR 2			4	563	195	820	604	1 004	0.010	1 517	675.2	1,792	- 400
51,734 51,734 186,881	VOx Emissions QTR 3 (lbs)			441	563	195	820	604	1,004	1,010	4 542	2,0/3	1,792	
52,020 52,020 187,267	QTR 4			44:	563	195	820	804	1004	1,076	277	2,5/3	1,792	
174,480 174,480 87.24 87.24 154.88	Annual		135,280	0.22	0.28	0 10	0.41	0.30	27.78	0.70	0.39	1.29	0.90	
7,548 7,548 12,850	OTR 1		-			0 1	ν.	- 5		20	12	34	23	
7,554 7,554 12,857	QTR 2			٠.		0 1	۰ -	• =	. 60	20	12	34	23	
7,582 7,582 12,884	SOx Emissions QTR 3 (lbs)		-			9 8	v =	• =	60	20	12	34	23	
7,584 7,584 12,866	ns QTR 4 (lbs)		-	٠ -	• •	0 1	s =	. 17	8	20	12	34	23	
5,08 5,08 7,74	Annual		0.00	0 0	200	3 6	0.00	0.01	0.03	0.01	0.01	0.02	0.01	
10,585 10,585 15,689	QTR 1		ď	å ä	1 0	5 4	9	2 23	326	107	66	183	127	
10,826 10,626 15,729	QTR 2		10	ā	5 5	5 •	9 4	23	326	107	66	183	127	
10,707 10,707 10,707	PM10 Emissions		A	5 6	5 5	÷ «	, <u>s</u>	23	226	107	66	183	127	
10,731 10,731 15,835	Ons OTR 4		A.E.	ď	i	\$ c	34	23	326	107	66	183	127	
17.81 17.81 20.25	Annual		0.01	0.01	0.00	0.00	0.02	0.01	0.16	0.05	0.03	0.09	0.06	

COMMENTS: The following Changes were made to this PTE worksheet from the last update (10/02/2012): (1) Emissions were added for C-12-125, C-12-126, C-12-129, and C-12-130. Engineer: AH L L L L L L L L L L L L L	VOC NOX	VOC CO CO NOX SOX PM 19
hanges were madere added for C-1	Post-Proje	Cuerter #1 (lb) 13,315 2207,733 51,157 7,548 10,565
e to this PTE work: 2-125, C-12-128, C	ect Stationary	ty Policy 28 P Quarter #2 (lb) 13,367 209,636 51,306 7,554 10,626
The following Changes were made to this PTE worksheet from the last upda (1) Emissions were added for C-12-125, C-12-126, C-12-129, and C-12-130 AH	Post-Project Stationary Source Potential to Emit (SSPE	Facility Policy 28 Post-Project Potential to Emit r#1 Quarior #2 Querier #3 Querier #4 (bb) (bb) (bb) (b) 15 13.367 13.480 13.548 33 209,638 211,813 212,103 57 51,306 51,734 52,000 8 7,554 7,562 7,564 95 10,625 10,707 10,731
pdate (10/02/2012 130.	rtial to Emit (otential to En Quarter #4 (lb) 13,548 212,103 52,020 7,564 10,731
, ş		11t Yearly (lb) 52,520 808,220 174,480 10,160 35,620
	Yearly 52,520 174,480	(tons) 28.26 404.11 87.24 5.08 17.81
Date: /2	MITIGATION THRESHOLDS ([tb/year) 20,000 20,000	OFFSET THRESHOLDS ([bb/qt)] 7,500 49,500 7,500 13,660 13,660
Date: 12/20/2017	SSPE	Quarter#1 Above Above Above Below Below
8	Comparison to R Annual Above Above	Quarter #2 Above Above Below Below
	SSPE Comparison to Rule 3.20 Triggers Annual Above Above	PTE Comparison to NSR Triggers Quarter #2 Quarter #3 (Above Above Above Above Above Below Below Below
	riggers	Quarter #4 Above Above Above Below Below

Date: 12/20/2017

Engineer: AH CC

YOLO-SOLANO AIR QUALITY MANAGEMENT DISTRICT

1947 Galileo Court, Suite 103; Davis, CA 956/18

New Source Review

Last rive Year Activity

Evaluator: Alex Huth

8221

Facility Name: UC Davis

Date of Initial Five Year Determination: **Date of Previous Five Year Determination:** Date of Current Five Year Determination:

5/22/1998 10/2/2012 12/20/2012

Location: UC Davis Main Campus

List of Activities: C-12-125, C-12-126, C-12-129, C-12-130

<u>Equipment</u>	Issued Permits	Date PTO issued	ATC	Date ATC Issued	VOC (tpy)	CO (tpy)	NOx (tpy)	SOx (tpy)	PM10 (tpy)
Woodworking	P-95-80(a1)	5/15/2008	C-07-25	12/27/2007	0.00	0.00	0.00	0.00	0.83
Woodworking	P-54-90(a)	5/27/2011	C-07-105	12/27/2007	0.00	0.00	0.00	0.00	0.07
Boilers	P-67-00(a)	4/8/2009	C-08-61	1/8/2009	0.06	0.88	1.05	0.01	0.08
GDF	P-84-93(a1)	4/8/2009	C-08-97	1/8/2009	0.00	0.00	0.00	0.00	0.00
Emergency ICE	P-2-09	4/2/2010	C-08-110	1/8/2009	0.00	0.02	0.06	0.00	0.00
Emergency ICE	P-3-09	6/18/2009	C-08-193	1/8/2009	0.17	0.34	0.07	0.01	0.01
Emergency ICE	P-4-09	4/2/2010	C-08-232(rev)	1/8/2009	0.01	0.07	0.22	0.00	0.01
Emergency ICE	P-16-09	4/2/2010	C-08-254	5/1/2009	0.03	0.17	0.88	0.00	0.01
Emergency ICE	P-17-09	3/17/2010	C-09-16	5/1/2009	0.00	0.02	0.18	0.00	0.00
GDF	P-42-76(a2)	4/1/2010	C-09-57	3/5/2009	0.44	0.00	0.00	0.00	0.00
Emergency ICE	P-66-09	5/24/2010	C-09-127	9/18/2009	0.00	0.04	0.08	0.00	0.00
Emergency ICE	P-67-09	5/24/2010	C-09-128	9/18/2009	0.00	0.05	0.10	0.00	0.00
Emergency ICE	P-68-09	5/24/2010	C-09-129	9/18/2009	0.01	0.07	0.24	0.00	0.01
Emergency ICE	P-54-09	4/2/2010	C-09-139	9/18/2009	0.01	80.0	0.82	0.00	0.01
Emergency ICE	P-69-09	9/9/2010	C-09-161	9/18/2009	0.02	0.06	0.84	0.00	0.01
Boilers	P-63-06(a)	9/24/2010	C-09-210	6/3/2010	0.16	0.50	0.51	0.00	0.04
Emergency ICE	P-42-10	4/20/2011	C-10-17	9/8/2010	0.00	0.03	0.18	0.00	0.00
Emergency ICE	P-43-10	6/1/2011	C-10-38	9/8/2010	0.00	0.02	0.00	0.00	0.00
Emergency ICE	P-44-10	4/20/2011	C-10-45	9/8/2010	0.04	0.18	0.87	0.00	0.03
Emergency ICE	P-7-11	8/2/2011	C-10-105	3/25/2011	0.01	0.08	0.35	0.00	0.01
Boile:	P-54-00(a)	8/9/2011	C-10-93	3/25/2011	0.07	0.58	0.48	0.01	0.10
Boiler	P-44-11	1/9/2012	C-11-62	8/23/2011	0.02	0.15	0.07	0.00	0.02
GDF	P-1-81(a3)	5/1/2012	C-11-80	3/5/2012	0.95	0.00	0.00	0.00	0.00
Emergency ICE	P-72-11	9/27/2012	C-11-89	3/5/2012	0.03	0.31	1.08	0.00	0.03
Emergency ICE	(P-39-12)	-	C-12-89	12/10/2012	0.02	0.11	0.30	0.00	0.02
Emergency ICE	(P-51-12)	2	C-12-125	In Process	0.04	0.06	0.41	0.00	0.00
Emergency ICE	(P-52-12)	-	C-12-126	In Process	0.00	0.05	0.10	0.00	0.00
Emergency ICE	(P-55-12)	¥	C-12-129	In Process	0.01	0.05	0.28	0.00	0.01
Emergency ICE	(P-56-12)	-	C-12-130	in Process	0.01	0.06	0.22	0.00	0.01
	TOTAL				2.11	3.98	9.39	0.03	1.31

COMMENTS:

These permits are sorted by date the ATC was issued. According to Rule 3.4 Section 221, a major modification is calculated based on all creditable increases and decreases from the source over the period of five consecutive years before the application, including the calendar year of the most recent application. Therefore the applicable years are December 2007 through December 2012.

The following changes were made to this worksheet from the last update (10/2/2012):

- (1) Only active PTOs and ATC wiith ATC issue dates within the applicable period have been considered.
- (2) Added emissions from C-12-125, C-12-126, C-12-129, and C-12-130.

Engineer:

Reviewed by:

```
*** SCREEN3 MODEL RUN ***
*** VERSION DATED 96043 ***
```

C-12-129 University of California, Davis

SIMPLE TERRAIN INPUTS: SOURCE TYPE

SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	1.00000
STACK HEIGHT (M)	=	2.5908
STK INSIDE DIAM (M)	=	0.1524
STK EXIT VELOCITY (M		58.1090
STK GAS EXIT TEMP (K)		770.3722
AMBIENT AIR TEMP (K)	=	293.1500
RECEPTOR HEIGHT (M)	=	0.0000
URBAN/RURAL OPTION	=	URBAN
BUILDING HEIGHT (M)	=	0.0000
MIN HORIZ BLDG DIM (M) =	0.0000
MAX HORIZ BLDG DIM (м) =	0.0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 2.050 M**4/S**3; MOM. FLUX = 7.461 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK MIX HT (M/S) (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
1. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000. 1100. 1200. 1300. 1400. 1500. 1600. 1700. 1800. 2000. 2100. 2200. 2300.	0.000 269.6 150.4 134.5 127.5 111.0 94.63 80.83 69.64 60.63 53.34 47.38 42.45 38.34 34.86 31.91 29.36 27.15 25.23 23.53 22.03 20.70 19.50 18.43 17.46	144666666666666666666666666666666666666	1.0 3.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 320.0 3.0 960.0 1.5 480.0 1.0 10000.0	39.29 14.82 27.06 33.93 33.93 33.93 33.93 33.93 33.93 33.93 33.93 33.93 33.93 33.93 33.93 33.93 33.93 33.93	1.65 16.07 31.58 32.44 41.82 51.00 59.94 68.65 77.12 85.36 93.40 101.23 108.87 116.33 123.62 130.75 137.72 144.55 151.24 157.24 157.27 164.22 170.53 176.72 182.81 188.78	1.64 14.23 28.08 21.85 26.84 31.53 35.96 40.12 44.07 47.81 51.38 54.79 58.07 61.21 64.24 67.16 69.99 72.73 75.40 77.98 80.50 82.95 85.35 87.68 89.97	NO NO NO NO NO NO NO NO NO NO NO NO NO N

```
2500. 16.57 6 1.0 1.0 10000.0
2600. 15.77 6 1.0 1.0 10000.0
2700. 15.04 6 1.0 1.0 10000.0
2800. 14.37 6 1.0 1.0 10000.0
2900. 13.75 6 1.0 1.0 10000.0
3000. 13.18 6 1.0 1.0 10000.0
3500. 10.88 6 1.0 1.0 10000.0
4000. 9.244 6 1.0 1.0 10000.0
5000. 7.069 6 1.0 1.0 10000.0
5000. 7.069 6 1.0 1.0 10000.0
5500. 6.316 6 1.0 1.0 10000.0
6000. 5.703 6 1.0 1.0 10000.0
6500. 5.196 6 1.0 1.0 10000.0
7000. 4.770 6 1.0 1.0 10000.0
7500. 4.407 6 1.0 1.0 10000.0
8000. 4.095 6 1.0 1.0 10000.0
8500. 3.823 6 1.0 1.0 10000.0
8500. 3.823 6 1.0 1.0 10000.0
9500. 3.584 6 1.0 1.0 10000.0
9500. 3.584 6 1.0 1.0 10000.0
9500. 3.823 6 1.0 1.0 10000.0
9500. 3.823 6 1.0 1.0 10000.0
9500. 3.823 6 1.0 1.0 10000.0
9500. 3.823 6 1.0 1.0 10000.0
9500. 3.824 6 1.0 1.0 10000.0
9500. 3.825 6 1.0 1.0 10000.0
9500. 3.826 6 1.0 1.0 10000.0
9500. 3.827 6 1.0 1.0 10000.0
9500. 3.828 6 1.0 1.0 10000.0
9500. 3.829 6 1.0 1.0 10000.0
                                                                  C12129.OUT.TXT
                                                                                                 33.93 194.66
                                                                                                                                92.20
                                                                                                                                                 NO
                                                                                                               200.44
                                                                                                 33.93
                                                                                                                                94.39
                                                                                                                                                 NO
                                                                                                33.93
                                                                                                               206.13
                                                                                                                                96.53
                                                                                                                                                 NO
                                                                                                33.93
33.93
                                                                                                               211.72
                                                                                                                                98.64
                                                                                                                                                 NO
                                                                                                               217.24
                                                                                                                              100.70
                                                                                                                                                 NO
                                                                                                 33.93
                                                                                                               222.67
                                                                                                                              102.73
                                                                                                                                                 NO
                                                                                                 33.93
                                                                                                               248.68
                                                                                                                              112.36
                                                                                                                                                 NO
                                                                                                               273.02
                                                                                                 33.93
                                                                                                                              121.28
                                                                                                                                                 NO
                                                                                                 33.93
                                                                                                               295.95
                                                                                                                              129.63
                                                                                                                                                 NO
                                                                                                 33.93
                                                                                                               317.67
                                                                                                                              137.49
                                                                                                                                                 NO
                                                                                                 33.93
                                                                                                               338.32
                                                                                                                              144.95
                                                                                                                                                 NO
                                                                                                 33.93
                                                                                                               358.05
                                                                                                                              152.05
                                                                                                                                                 NO
                                                                                                 33.93
33.93
                                                                                                               376.94
395.10
                                                                                                                              158.85
                                                                                                                                                 NO
                                                                                                                              165.38
                                                                                                                                                 NO
                                                                                                               412.60
                                                                                                 33.93
                                                                                                                              171.66
                                                                                                                                                 NO
                                                                                                 33.93
                                                                                                              429.49
                                                                                                                              177.73
                                                                                                                                                 NO
                                                                                                              445.83
                                                                                                 33.93
                                                                                                                              183.60
                                                                                                                                                 NO
                                                                                                 33.93
                                                                                                              461.68
                                                                                                                              189.29
                                                                                                                                                 NO
                                                                                                 33.93
                                                                                                              477.06
                                                                                                                              194.82
                                                                                                                                                 NO
                                                                                                33.93
                                                                                                              492.02
                                                                                                                              200.20
                                                                                                                                                 NO
                                                                                                              623.71
                                                                                                                              247.70
                                                                                                 33.93
                                                                                                                                                 NO
                                                                                                33.93
33.93
                                                                                                              733.39
829.20
                                                                                                                              287.51
                                                                                                                                                 NO
                                                                                                                              322.45
                                                                                                                                                 NO
                                                                                                33.93 915.30 353.97
39.29 1552.26 1553.20
39.29 1745.77 1750.03
                                                                                                                                                 NO
                                                                                                                                                 NO
                                                                                                                                                 NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND
                                                                                  1. M:
       22. 546.2 3 10.0 10.0 3200.0 6.26 5.07 4.63
                                                                                                                                                NO
 DWASH= MEANS NO CALC MADE (CONC = 0.0)
 DWASH=NO MEANS NO BUILDING DOWNWASH USED
 DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
 DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
 DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB
         ***********
        *** SUMMARY OF SCREEN MODEL RESULTS ***
******************************
 CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M)
 CALCULATION
                                                                                TERRAIN
```

22.

0.

SIMPLE TERRAIN 546.2

BACT DETERMINATION 663-1

Emission Unit:

Diesel fired emergency internal combustion (IC) engine

Rating:

463 BHP

Facility Name:

University of California, Davis

Mailing Address:

One Shields Avenue, Office of Environmental Health and Safety

Davis, CA 95616

Contact Name:

Aimee Pfohl, Environmental Specialist

Telephone:

(530) 752-4527

Engineer:

Alex Huth

Date:

December 26, 2012

Application #:

C-12-129

I. Proposal:

The applicant is proposing to install a 463 BHP diesel fired emergency IC engine to power an electric generator when electrical power from the utility grid is interrupted.

II. Applicability:

The proposed emissions for the new emergency engine are shown below.

	voc	СО	NOx (as NO ₂)	SOx (as SO ₂)	PM ₁₀
Proposed Emissions	2.0 lb/day	11.0 lb/day	67.6 lb/day	0.1 lb/day	2.0 lb/day
Rule 3.4, Section 301.1 Triggers	10.0 lb/day	250.0 lb/day	10.0 lb/day	80.0 lb/day	80.0 lb/day

The engine is a new emissions unit and results in an increase in quarterly potential to emit for all pollutants. As shown above, BACT is not triggered for VOC, CO, SOx and PM₁₀ because the proposed emissions do not exceed the trigger levels specified by Rule 3.4, Section 301.1. BACT is triggered for NOx emissions because the proposed emissions exceed the trigger level specified by Rule 3.4, Section 301.1 and the application results in a quarterly increase in potential to emit.

III. BACT for NOx:

Per a District Memorandum¹ (dated June 13, 2008), after June 30, 2008 any new emergency diesel-fired engine with a rating greater than or equal to 175 BHP, but less than or equal to 750 BHP, must meet the NOx standards of EPA Tier III engines (effective in 2006). The applicant has provided a copy of the engine manufacturer's guarantee showing that the engine meets the Tier III standard of 3.0 g/bhp-hr for NOx+HC. Therefore, BACT is satisfied for NOx.

^{1.} BACT for Emergency Diesel Internal Combustion Engines, Engineering Section Policies and Procedures Manual.